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Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy
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We present a theoretical study of the resonant interaction between dynamical localized states~discrete
breathers! and linear electromagnetic excitations~EE’s! in Josephson junction ladders. By making use of direct
numerical simulations we find that such an interaction manifests itself byresonant stepsand various sharp
switchings~voltage jumps! in the current-voltage characteristics. Moreover, the power of ac oscillations away
from the breather center~thebreather tail! displays singularities as the externally applied dc bias decreases. All
these features may be mapped to the spectrum of EE’s that has been derived analytically and numerically.
Using an improved analysis of the breather tail, a spectroscopy of the EE’s is developed. The nature of breather
instability driven by localized EE’s is established.
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I. INTRODUCTION

Various nonlinear and discrete systems~nonlinear lattices!
have attracted a lot of interest as they display diverse fa
nating phenomena@1#. Well-known examples of such phe
nomena are solitary excitations, propagation of~non!linear
waves, and the appearance of various inhomogeneous s
tures.

Moreover, the interest in this area was boosted by
prediction, theoretical analysis@2–4#, and the subsequent ob
servation@5–10# of intrinsic dynamic localized excitation
~discrete breathers! that are periodic in time and localized i
space. Note here that the origin of such dynamical local
tion is not the presence of disorder but the interplay betw
the nonlinearity and discreteness.

These peculiar states have been experimentally verifie
vibrational modes in low-dimensional crystals@5#, localized
excitations in spin lattices@6#, and localized resistive state
in Josephson junction arrays@7–10#. The latter systems ar
of special interest because they have served for many y
as well-controlled laboratory objects to study various non
ear phenomena@1,11#. Moreover, at variance with other sys
tems, intrinsic localized modes found in Josephson coup
systems may be excited in the presence of time-indepen
external driving forces.

A well-known structure where dynamical localized sta
appear, is the anisotropic Josephson junction ladder~JJL!
@7–10#. A schematic view of such a ladder is given in Fig.
The ladder contains small Josephson junctions indicated
crosses in Fig. 1, in both longitudinal~vertical junctions! and
transverse~horizontaljunctions! directions to the dc bias cur
rent g. The anisotropy of the ladder is due to the differe
sizes of vertical and horizontal junctions and is characteri
by the anisotropy parameterh5I cH /I cV , whereI cV and I cH
1063-651X/2001/64~6!/066601~14!/$20.00 64 0666
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are, respectively, the critical currents of the vertical and ho
zontal junctions.

Dynamical localized excitations persist in a JJL due to
intrinsic bistability property of a single small underdamp
Josephson junction. One of these stable states is a supe
ducting one with zero voltage drop across the junction. T
other state is a resistive one with a nonzero voltage dr
also called a whirling state. A breather state in a JJL is ch
acterized by a few junctions being in the resistive state, wh
the rest of all junctions are in the superconducting state.
presence of breather states may be verified by measurem
of a total dc voltage drop across the ladder, which is use
plot current-voltage (I -V) characteristics. This method doe
not provide spatially resolved information. It has been s
cessfully combined with snapshots made using lo
temperature laser microscopy techniques@8#, which allow for
a spatial resolution of the dc voltage drops. Note that b
methods provide only time-averaged voltage drop data,
the internal dynamics are so far not accessible in exp
ments.

However, the full dynamical picture is much more sub
than the time-averaged picture might suggest. In particu
the Josephson junctions in the superconducting state ex
small librations of the Josephson phase and correspondin
nonzero ac voltage drops. The amplitude of these librati
should decay to zero with increasing distance from the re

FIG. 1. Josephson junction ladder. Crosses mark the individ
junctions. Arrows indicate the direction of external current flow~dc
biasg).
©2001 The American Physical Society01-1
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tive junctions. It is also well known that various systems
coupled Josephson junctions support a delocalized clas
excitations, namely, small amplitude electromagnetic wa
~EW’s! @11,12#. In JJL’s, the spectrum of EW’s consists
three branches and depends in a complex manner on
anisotropyh and the dc biasg. The resonant interaction o
these EW’s with the homogeneous whirling state~HWS! in
the presence of an externally applied magnetic field has b
studied in Ref.@12#. It was shown that such an interactio
leads toresonant stepsin I -V curves and the voltage pos
tions of resonant steps may be mapped onto the spectru
EW’s.

Early theoretical studies@13# dealt with the possibility of
resonant interaction of breather states with EW’s of the l
der. Due to the intrinsic spatial inhomogeneity of a breat
state, EW’s may be excited even in the absence of an ex
nally applied magnetic field. The resonant interaction
EW’s with the breather state manifests itself through the
pearance of resonant steps@10# and various switchings be
tween different breather states~‘‘ voltage jumps’’ ! in I -V
curves. Moreover, the amplitude of the Josephson phas
brations at some distance from the breather center incre
drastically due to this interaction@13#.

The spatial inhomogeneity of a breather state allows a
for the appearance oflocalizedsmall amplitude electromag
netic excitations~EE’s!. We will show that the presence o
localized EE’s and their resonant interaction with t
breather is of crucial importance. Our study resolves a lo
standing puzzle of the nature of breather instabilities.
show that most of these instabilities are driven by localiz
EE’s. Especially the so-called retrapping~i.e., the switching
from a breather to the superconducting state! is due to these
instabilities and cannot be explained using standard ret
ping arguments.

In this paper, we present a consistent theoretical stud
resonant interactions between the breather states and E
We will derive the spectrum of EW’s and calculate the
power of oscillations at some distance from the breather c
ter ~‘‘breather tail’’!. By making use of direct numerica
simulations of the dynamics of JJL’s in different parame
ranges, we demonstrate that theI -V curves display a variety
of different resonance steps and voltage jumps as the e
nal dc bias, and correspondingly, the breather frequency,
crease. All these features are mapped onto various r
nances of the breather frequency~or even its second an
third harmonics! with EE frequencies, as well as with com
binations of frequencies of different EE’s. Moreover,
monitoring the power of ac oscillations as a function of t
dc biasg, we develop a spectroscopy of the EW’s in the J

The paper is organized as follows: In Sec. II, we der
the equations of motion within the framework of the res
tively shunted junction~RSJ! model @11# and obtain the
spectrum of linear EW’s of a JJL. A symmetry classificati
of different types of breathers is presented in Sec. III.
improved analysis of the breather tail and the correspond
dependence of the power of ac oscillations on the brea
frequency is given in Sec. IV. In Sec. V, we will classi
different resonances of breathers with EE’s. Direct numer
simulations of the dynamics of breather states are prese
06660
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and discussed in Sec. VI. Section VII is devoted to the int
pretation of the obtained resonances and switchings.

II. DYNAMICS OF A JJL AND THE SPECTRUM
OF LINEAR ELECTROMAGNETIC WAVES

The complete dynamics of a JJL is determined by
time-dependent Josephson phases of verticalfn

v , upper hori-

zontalfn
h, and lower horizontalf̃n

h junctions. The subscrip
n labels the cell number. By making use of the RSJ mo
for each junction@11# we obtain the following set of equa
tions:

N~fn
v!5I n

v ,

N~fn
h!5

1

h
I n

h , ~1!

N~f̃n
h!5

1

h
Ĩ n

h ,

where the nonlinear operatorN is defined as

N~y!5 ÿ1a ẏ1siny. ~2!

Here, the unit of time is the inverse plasma frequencyvp
21 ,

and the currentsI n
v , I n

h , and Ĩ n
h are measured in units of th

critical current of vertical junctions. The dimensionless p
rametera determines the damping strength in each juncti
Note that the positive current direction is chosen to be
rected from bottom to top and from left to right. The curren
flowing via the Josephson junctions and the Joseph
phases are governed by the Kirchhoff laws

g5I n
v1I n

h2I n21
h ,

g5I n
v2 Ĩ n

h1 Ĩ n21
h , ~3!

and the flux quantization law in each cell,

2bLI n
m5fn

h1fn11
v 2f̃n

h2fn
v . ~4!

Here, we introduced the mesh currentsI n
m and the normalized

inductance of the cell,bL .
The Kirchhoff equations may be subtracted from ea

other yielding

I n
h1 Ĩ n

h5C, ~5!

where C is a constant for the whole ladder. This consta
corresponds to the net difference between the currents fl
ing through the upper- and lower-horizontal junctions. For
open ladder of finite size,C is zero. For a ladder of annula
geometry with periodic boundary conditionsC may be non-
zero and corresponds to the flux ‘‘trapped’’ by the ladd
ring. In the following, we will consider the case of a finit
open ladder withC50. Then we may always eliminate th
currentsĨ n

h from the set of equations~1! as Ĩ n
h52I n

h . Since
1-2
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BREATHERS IN JOSEPHSON JUNCTION LADDERS: . . . PHYSICAL REVIEW E 64 066601
the junction width is larger than the London penetrati
depth, the mesh currents are@14#

I n
m5I n

h , ~6!

and the currents flowing through the vertical junctions
expressed as

I n
v5g2I n

m1I n21
m . ~7!

Inserting the relations~4!, ~6!, and ~7! into Eq. ~1! we
finally obtain the following set of coupled differential equ
tions @8,12,13,15#:

f̈n
v1aḟn

v1sinfn
v5g1

1

bL
~Dfn

v1¹fn21
h 2¹f̃n21

h !,

f̈n
h1aḟn

h1sinfn
h52

1

hbL
~¹fn

v1fn
h2f̃n

h!, ~8!

f̈̃n
h1aḟ̃n

h1sinf̃n
h5

1

hbL
~¹fn

v1fn
h2f̃n

h!,

where we use the notationsD f n[ f n2122 f n1 f n11 and
¹ f n[ f n112 f n .

Next, we carry out the analysis of thedelocalized classof
excitations, namely, of small amplitude electromagne
waves~EW’s!. Note here that the spectrum of EW’sv(q)
depends crucially on the state of the system. In the follo
ing, we will consider a static~superconducting! state,fn*

v

5arcsing andfn*
h5f̃n*

h50. We decompose the Josephs
phases into the particular form

fn
v5fn*

v1wn
v ,

fn
h5fn*

h1wn
h , ~9!

f̃n
h5f̃n*

h1w̃n
h ,

wherewn
v , wn

h , and w̃n
h describe the small amplitude EW’s

Substituting these expressions into system~8! and using the
smallness of the amplitude of EW’s we obtain

ẅn
v1aẇn

v1A12g2wn
v5

1

bL
~Dwn

v1¹wn21
h 2¹w̃n21

h !,

ẅn
h1aẇn

h1wn
h52

1

hbL
~¹wn

v1wn
h2w̃n

h!, ~10!

ẅ̃n
h1aẇ̃n

h1w̃n
h5

1

hbL
~¹wn

v1wn
h2w̃n

h!.

In the weakly damped case as the parametera!1, we can
derive the spectrumv(q) of EW’s neglecting effects of dis
sipation. By taking the Josephson phaseswn

v , wn
h , andw̃n

h in
the form
06660
e
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S wn
v

wn
h

w̃n
h
D 5ei (qn1vt)S Dv

Dh

D̃h

D , ~11!

we find that the spectrum consists of three branches. The
is given by

v0
251, Dv50, Dh5D̃h . ~12!

This branch is dispersionless and EW’s corresponding to
branch are characterized by nonactive vertical junctions
in phase~symmetric! librations of the Josephson phases
upper- and lower-horizontal junctions.

The two other solutions are generalizations of those d
cussed in Ref.@13#, namely,

v6
2 5F6AF22G,

F5
1

2
1

1

bLh
1

1

2
A12g21

1

bL
~12cosq!, ~13!

G5S 11
2

bLh DA12g21
2

bL
~12cosq!.

Both branches have a nonzero dispersion.
The branchv1 is characterized byDh52D̃h for all

wave-vectorsq, i.e., the upper- and lower-horizontal phas
are antisymmetric. The frequency range of the branch
above the degenerate branchv0, i.e., v1(q).v0 and it de-
pends strongly onbL . As the parameterbL increases, the
width of v1(q) decreases and the branch approaches
dispersionless one,v0. In the opposite case of smallbL , the
frequenciesv1(q) increase as 1/AbL. For zero wave-
number q50, the amplitudes of EW’s in this branch ar
characterized byDv50 and Dh52D̃h , which means that
only horizontal junctions are excited.

The branchv2 becomes dispersionless for the particu
case ofg50 and it corresponds to the dispersionless ba
obtained in Ref.@13#. The frequency range of this branch
located belowv0, i.e., v2(q),v0(q). For zero wave-
number q50, the horizontal junctions are not active (Dh

5D̃h50) and only vertical junctions are excited.
For a finite-size ladder with open boundary conditions a

N cells, i.e.,N11 vertical junctions, the spectrum of linea
waves is discrete and characterized by the following cho
of allowed wave number values:

ql5
lp

N11
, l 50,1,2, . . . ,N. ~14!

These EW’s arecavity modesof the JJL. Odd values ofl
correspond to antisymmetric eigenvectors~with respect to
reflections at the center of the ladder!, whereas even value
correspond to symmetric ones.

Note that the above spectrum of EW’s~13! is in general
quite different from the EW spectrum of the homogeneo
whirling state@12#. The latter may be obtained by choosin
1-3
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A. E. MIROSHNICHENKOet al. PHYSICAL REVIEW E 64 066601
g51 in Eq.~13!. The main difference is the appearance o
gapless~acoustic! lower branch.

III. SYMMETRIES AND DC BIAS DEPENDENT
FREQUENCIES OF BREATHERS

In this section, we turn to the analysis ofdynamic local-
ized excitations~breathers! in JJL’s. As mentioned in the
introduction, breather states correspond to a few juncti
being in the resistive state with all other junctions being
the superconducting state. The Josephson phases of res
junctions are unbounded in time and the Josephson phas
superconducting junctions display small amplitude libratio
with a frequencyV. This frequency is called thebreather
frequency.

Experiments @7–10# have revealed many differen
breather structures. All of them can be classified into th
symmetry types using the reflection symmetries of the J
Some possible realizations are presented schematical
Fig. 2.

Breathers from the first group reveal an ‘‘up-down’’ re-
flection symmetry Ŝud @see, Fig. 2~a!#, i.e., they are invari-
ant under exchange of upper- and lower-horizontal junctio
The second group consists of breathers invariant und
‘‘ left-right ’’ reflection symmetry Ŝlr @see, Fig. 2~b!#, i.e.,
they are invariant under a reflection at a vertical line cutt
the ladder~this line is located either in the middle betwee
two vertical junctions, or passes directly through one verti
junction!. A third distinct group of breathers possesses
‘‘ inversion’’ symmetry Ŝin ~Fig. 2~c!!, i.e., these breather
are invariant under a reflection at a point that is either loca
on a vertical junction or in the center of a plaquette. A fou
group of breathers hasno symmetries at all and does no
belong to any of the three listed symmetry types. A particu
example of a breather without symmetry is shown in F
2~d!. All of these types of breather excitations have be
observed experimentally and numerically@7–10#. Each
group of breathers may also have a different number of v
tical junctions in the resistive state. Note that the particu
example in Fig. 2~a! possesses not onlyŜud symmetry, but
also Ŝlr and Ŝin symmetries. However, it is also possible
construct more complex breather states that displayŜud sym-
metry only.

Next, we derive the average voltage drop across a re
tive vertical junctionV5^ḟv& for different breather types
For the particular case of a breather with up-down symme
Ŝud , there arek rotating vertical junctions in cells (i
11), . . . ,(i 1k) and two rotating horizontal junctions in th

FIG. 2. Examples of different types of breathers:~a! up-down
symmetry,~b! left-right symmetry,~c! inversion symmetry,~d! no
symmetry. Black spots indicate the positions of whirling junctio
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( i )th and (i 1k)th cells, respectively. By making use of th
flux quantization law~4!, we obtain identical voltage drop
across the vertical junctions in the resistive state. For
same reasons, the voltage drops across the horizontal j
tions are two times smaller. Neglecting nonlinear contrib
tions from the time average of sinf on resistive junctions we
obtain

a
V

2
5

1

h
^I i

m&,

aV5g1^I i 11
m &2^I i

m&,

••• ~15!

aV5g1^I i 1k
m &2^I i 1k21

m &,

a
V

2
52

1

h
^I i 1k

m &.

Thus, the voltage drop across a resistive vertical junction
corresponds to the experimentally measured voltage d
across the ladder, is given by

V5
kg

a~k1h!
. ~16!

Similarly, we analyze a breather with left-right symmetryŜlr

and with inversion symmetryŜin . Taking into account that
in these cases the voltage drops across resistive horizo
and vertical junctions are identical, we find

V5
kg

a~k12h!
. ~17!

In a similar manner, the result for a breather that has
symmetry@cf. Fig. 2~d!# reads

V5
kg

a@k1~3/2!h#
. ~18!

The above results for the dependence of the average vo
drop on the dc bias may be combined in a single expres

V5
kg

a~k1@32~1/2!d#h!
, ~19!

wherek is the number of vertical rotating junctions andd
denotes the number of resistive horizontal junctions. N
that d54 for breathers with up-down symmetry,d52 for
left-right or inversion symmetry, andd53 for no symmetry.

In order to analyze the interaction between the breat
state and the linear EE’s, we need to know the frequencyV
of a breather solution. Noting that the breather frequenc
given by the lowest-realized voltage drop across a resis
junction, we find

.

1-4
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BREATHERS IN JOSEPHSON JUNCTION LADDERS: . . . PHYSICAL REVIEW E 64 066601
~1! Up-down symmetry

V5
kg

2a~k1h!
, ~20!

~2! left-right symmetry and inversion symmetry

V5
kg

a~k12h!
, ~21!

~3! no symmetry

V5
kg

a~2k13h!
. ~22!

IV. SPATIAL TAILS OF BREATHERS

We consider the spatial dependence of Josephson ph
in the presence of a breather state. At some distance from
breather center~‘‘breather tail’’!, the Josephson phases
brate with small amplitudes. In order to analyze the breat
dynamics in the tail, we use the linearized system of eq
tions ~10!. Keeping in mind the time periodicity of the
breather solution, the librating Josephson phases take
form ~for n,0, and with the breather center as the origin!

S wn
v

wn
h

w̃n
h
D 5eln1 iVtS Dv

Dh

D̃h

D . ~23!

Introducing the sum and difference variables of the am
tudes of Josephson phases of horizontal junctions

Dh
15

1

2
~Dh1D̃h!, Dh

25
1

2
~Dh2D̃h!, ~24!

it follows that

S A2
2

bL
coshl DDv2

2

bL
~12e2l!Dh

250,

2
1

bLh
~12el!Dv1BDh

250, ~25!

~2V21 iaV11!Dh
150,

where the frequency dependent parametersA andB are

A52V21 iaV1A12g21
2

bL
,

B52V21 iaV111
2

bLh
. ~26!

From Eq.~25!, we immediately find thatDh
150, and hence,

Dh
25Dh . It follows thatwn

h52w̃n
h , i.e., breather tails appea

with perfect up-down symmetry. This is at variance with t
06660
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i-complex symmetry properties of the resistive breather ce
~see Sec. III!. A nontrivial solution to the first two equation
in Eq. ~25! exists if

AB2
2

bL
B coshl2

4

bL
2h

1
4

bL
2h

coshl50. ~27!

The dependence of the complex parameterl on the breather
frequencyV is given by

l5 ln~z1Az221!, ~28!

with

z5
42bL

2hAB

422bLhB
. ~29!

Note here that this expression may be obtained dire
from Eq. ~13! by assuming thatq5 il and substituting
V22 iaV instead ofv6

2 .
The real Re(l) and imaginary Im(l) parts of l deter-

mine, respectively, the spatial decay and spatial period
oscillations of Josephson phases in the breather tail. M
over, Re(l) and Im(l) strongly depend on the breather fr
quency that in turn, may be changed by varying the exter
dc biasg. In Figs. 3~a! and 3~b!, we plot the real and imagi-
nary parts ofl for three breather types~cf. Fig. 2! versusg.
The minima of the real part ofl correspond to resonance

FIG. 3. Dependence of~a! real part Re(l), ~b! imaginary part
Im(l), and ~c! Pac on g for different types of breathers: solid
line—up-down symmetry, dashed line—left-right symmetry, dott
line—no symmetry. The parameters area50.1, bL53.0, h50.35,
andk51.
1-5



e
o

e
it

-
l

th
e
re

ow
s
o

dg

o
en

th

th
ic

s

for
lities

all

re-
und
lo-

of

ul-

-
be
on

ore
lo-
eed
en-
en-
are

ized
ve-
ived
art

pli-
es
h
to-
ive

en-
ok
e-

e-
te

sta-

-

is-
r
ce

ies
t-

e

A. E. MIROSHNICHENKOet al. PHYSICAL REVIEW E 64 066601
with linear EW’s v1(q) and v2(q). As one can see, th
current positions of these minima shift for different types
breathers. Note that theg range in the plots extends from
zero to one. In fact, the breather will exist only in a narrow
current region. This is due to the presence of both a fin
nonzero retrapping current@11,16# ~switching to the super-
conducting state! and a particular currentg,1, where the
breather switches to the HWS.

Since the EW frequenciesv1(q) decrease with increas
ing inductance of the cell~13!, the position of the globa
minimum also depends strongly onbL @see Fig. 4~a!#.

Although the dynamics of the Josephson phases in
breather tail are completely determined by the dependenc
the parameterl on the breather frequency, it may be mo
convenient to measure just the time-average powerPac of
the libration of a junction at the edge of a JJL. We sh
below that the monitoring ofPac upon decreasing the dc bia
allows one to develop a spectroscopy of EW’s. The value
Pac is determined by the average kinetic energy of the e
vertical junction

Pac5
1

2
^ḟ l

v2
&, l 52

N

2
, ~30!

and is derived in Appendix A. The typical dependences
Pac on the dc bias and the inductance of the cell for differ
types of breathers are presented in Figs. 3~c! and 4~b!.

V. BREATHER INSTABILITIES AND CLASSIFICATION
OF RESONANCES

In early experiments on breathers in JJL’s@7,8#, it was
observed that breather states may switch to other brea
states or HWS’s upon variation of the dc biasg. These
switchings may be either due to the disappearance of
breather state as a solution of the underlying dynam
equations or due to the effect ofdynamical instabilityof the
breather state. In the latter case, the solution continue

FIG. 4. ~a! Re(l) and ~b! Pac versusg for different values of
the inductance of the cell:bL53, solid line; bL51, dashed line;
bL50.2, dotted line. All of these curves are for a left-right symm
try breather withk51.
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exist, but turns unstable, forcing the system to search
another stable attractor state. The cause of such instabi
is the resonant interaction of the breather state with sm
amplitude~localized or delocalized! EE’s.

In order to analyze the breather instabilities in more p
cise terms, we have to linearize the phase-space flow aro
a given breather solution and study the corresponding F
quet eigenvalue problem~see Appendix B!. The outcome of
this analysis is a spectrum of Floquet multipliers~i.e., eigen-
values! m. In most cases, the multipliers reside on a circle
radius

R~a!5exp~2ap/V!, ~31!

in the complex plane, which is less than one. Thus, the m
tipliers may be expressed in the general form

m5R~a!expS 6 iv
2p

V D , ~32!

whereV is the breather frequency andv is some character
istic EE frequency. The corresponding eigenvectors may
divided into two classes, namely, those that are localized
the breather and those that are delocalized. While it is m
involved to make analytical predictions for the class of
calized Floquet eigenstates, we may immediately proc
with the characterization of the class of delocalized eig
states. Although the concrete form of the delocalized eig
vectors has to be obtained numerically, the fact that they
delocalized allows one to determine their frequencyv. In-
deed, since the breather is itself a localized state, delocal
Floquet eigenstates simply correspond to the abo
discussed linear EW’s. Their frequencies have been der
in Sec. II, and thus, we may reconstruct the delocalized p
of the Floquet spectrum using them.

Stable breathers are characterized by all Floquet multi
ers being located inside or on the unit circle. Instabiliti
occur after collisions of multipliers on the inner circle wit
radius ~31! and a subsequent detaching from this circle
wards larger absolute values. Although in the dissipat
case, an additional change of the control parameter~dc bias
g) is necessary in order for the corresponding Floquet eig
value~s! to cross and escape the unit circle, we may still lo
for collision conditions and classify possible instability sc
narios.

Note that for Hamiltonian systems any collision and d
taching from the unit circle leads to an instability. Fini
~even though possibly weak! dissipation may drastically
change the instability patterns by selecting the strong in
bilities ~large detachments! over the weak instabilities~small
detachments!. This is exactly what we observe in our nu
merical studies.

By applying the general stability analysis of nonlinear d
crete systems@17# we obtain three possibilities for multiplie
collisions. The first is realized when the collision takes pla
on the positive real axis in the complex plane. This impl
that a multiplier is colliding with its complex conjugate par
ner. With Eq.~32!, it follows that

v5mV, ~33!

-

1-6
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for any integer numberm. These areprimary resonancesof
the breather frequency or its higher harmonics with any
the frequencies of the EE’s.

The collision of an eigenvalue with its complex conjuga
partner may also take place on the negative real axis in
complex plane

v5S 1

2
1mDV. ~34!

These areparametric resonancesof the breather state with
EE’s.

The third case is realized when the collision takes pl
away from the real axis. Then a multiplier has to collide w
a different one, but not with its own complex conjugate pa
ner. It follows that

v16v25mV. ~35!

This is acombination resonance, as the breather frequenc
~or its multiple! has to match a sum~difference! of the fre-
quencies of two different EE frequencies.

We stress again that EE’s may be localized or delocaliz
While we may proceed with an analytical prediction of co
lisions using delocalized Floquet multipliers, we have to u
numerical calculations to observe collisions involving loc
ized ones. Especially the combination resonance may
volve either two delocalized, two localized, or one deloc
ized and one localized Floquet eigenvalues. In addition,
above-mentioned dissipation-induced selection of weak
strong instabilities will result in some possible collisions b
ing harmless~leaving the breather stable! while others will
turn out to be important for understanding breather instab
ties.

VI. NUMERICAL SIMULATIONS OF BREATHER
DYNAMICS

To study the breather dynamics, we performed direct
merical simulations of the set of equations~8!. All simula-
tions were carried out for JJL’s withN510 cells. We impose
open boundary conditions and use the fourth-order Run
Kutta method. Time is measured in dimensionless time un
The initial value of the dc bias wasg50.8. We choose
proper initial conditions that lead to the relaxation of t
system into a particular breather state of left-right symme
with one resistive vertical junction, as in Fig. 2~b!. After a
waiting time of 500 time units we use the next 500 time un
to calculate the time-averaged characteristics of the state
then decrease the dc biasg by a tiny step ofDg50.0005 and
repeat the procedure. We checked that our results do
change upon further increase of the waiting time. We var
the anisotropyh and the inductance of the cellbL while the
dissipationa50.1 was fixed. We will comment on hysteres
effects due to additional increasing of the current in the c
clusion.

There are three different ways to monitor the simulatio
The first one is theI -V characteristics, that is, the depe
dence of the averaged voltage drop across the resistive
tical junction on the dc bias. Furthermore, we obtain
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power Pac ~30! of ac oscillations of the vertical junction a
the edge of JJL’s. Finally, we generate time-resolved ima
~movies! of the full dynamical behavior of the ladder so th
we may visually check whether the system still resides in
initially chosen breather state, or switches into another st
Our results are presented in Figs. 5–11, where each fig
consists of two parts. In the left-hand parts, theI -V charac-
teristics are shown~solid lines! together with the approxi-
mate results from Sec. III~dotted lines!. The vertically ori-
ented dashed lines indicate the band edges of the lin
EW’s. In the right-hand part of the figures we show the d
pendence ofPac ~solid lines! on the dc bias together with ou
approximate analysis from Sec. IV and Appendix A~dashed
lines!, where appropriate.

We start with the case of smallbL values. ForbL50.2
and h51.15 ~Fig. 5! the breather is easily excited, and i
frequency is located belowv1(q). In the Pac plot, we ob-
serve peaks that are due to the resonance of the second
third harmonics of the breather withv1(q). These reso-
nances are primary ones, as discussed above. Note that
presence is barely seen on theI -V curve. The series of ob
served peaks is related to the finite size of the system,

FIG. 5. I -V characteristics and thePac dependence on the d
bias current fora50.1, bL50.2, h51.15.

FIG. 6. I -V characteristics and thePac dependence on the d
bias current fora50.1, bL50.2, h50.35.
1-7
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therefore to the resonant interaction of the breather wit
discrete set of cavity modes as was discussed at the en
Sec. II. We tested our interpretation by increasing the siz
the system and observed the predicted increase in the nu
of resonance peaks. Close to the lowest possible cur
~around g50.55), we observe a switching to anoth
breather state, which however has the same symmetry
spatial structure. Note that shortly after this switching~upon
further lowering of the current! we lose the breather and th
system switches to the superconducting ground state.

For lower values of the anisotropyh50.35 ~Fig. 6!, the
resonances are again not detectable in theI -V curve. How-
ever, by monitoringPac , we observe the singularities tha
correspond to the primary resonance 2V5v1(q). More-
over, at the dc biasg'0.35, we detect a weak third-orde
primary resonance 3V5v1(q) in the breather tail. The
dashed line in the right part of the figure is the prediction
Pac using our approximate tail analysis. Note that our a
proximate tail analysis is based on the assumption of a de
spectrum of EW’s. Consequently, the calculatedPac presents
an envelope of the numerically observed series of disc
peaks.

Next, we increased the inductance of the cell tobL50.5.

FIG. 7. I -V characteristics and thePac dependence on the d
bias current fora50.1, bL50.5, h51.15.

FIG. 8. I -V characteristics and thePac dependence on the d
bias current fora50.1, bL50.5, h50.5.
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In Fig. 7, we show the results forh51.15. For the initial
value of the dc biasg50.8, the breather frequency is alread
located inside thev1(q) band of EW’s, and this primary
resonance is observed in theI -V curve. Indeed, the slope o
the I -V curve is larger than the prediction~21!, which does
not take into account resonant interactions with EE’s. W
decreasing dc bias, the breather frequency is lowered and
above primary resonance disappears. However, at lower
rent values the next primary resonances 2V5v1(q) occur
and are observable, both in the breather tail and in theI -V
characteristics.

The primary resonance structures@V5v1(q)# in the
large current domain are also observed for smaller value
the anisotropy parameterh50.5 ~Fig. 8!. In this case, they
manifest themselves throughresonant stepsin the I -V curve
@18#. At lower values of the dc bias, we again observe p
mary resonances withm52.

ForbL51.0 andh50.5 ~Fig. 9!, the breather frequency i
located abovev1(q) for large current values. Upon decrea
ing the dc bias, we observe a peculiar switch to a differ
breather state with the same spatial structure but a lo
frequency located insidev1(q). The most interesting featur
here is that shortly before the switching, the breather f

FIG. 9. I -V characteristics and thePac dependence on the d
bias current fora50.1, bL51.0, h50.5.

FIG. 10. I -V characteristics and thePac dependence on the d
bias current fora50.1, bL53.0, h50.5.
1-8
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BREATHERS IN JOSEPHSON JUNCTION LADDERS: . . . PHYSICAL REVIEW E 64 066601
quency is clearly larger and outside of thev1(q) region.
Upon further lowering of the dc bias we observe prima
resonancesV5v1(q), and corresponding resonant steps
the I -V curve.

Let us increase the inductance of the cellbL even further.
For bL53 andh50.5 ~Fig. 10! we again find that breathe
frequencies are located abovev1 for large current values
Similar to the previous case, we observe a switching w
the breather frequency is clearly outside~above! the branch
v1(q). This brings the system into another breather st
with the same spatial structure, but with a frequency ag
located abovev1 . This highly nonlinear state is then lost b
switching to the superconducting ground state after furt
decrease of the dc bias.

Now we come to an interesting observation. Lowering
anisotropyh50.35 ~Fig. 11!, we again observe the switch
ing at a breather frequency being located abovev1(q).
However, the switchingincreasesthe voltage drop. The stat
is of a different internal structure. We remind the reader t
all previous numerical results have been obtained fo
breather with a structure as in Fig. 2~b!. Here we find that
after the switch, the breather state is characterized bythree
vertical junctions being in the resistive state. At the sa
time the, symmetry is broken. In fact, this state exactly c
responds to the example given in Fig. 2~d!. Note that similar
switchings~which lead to an increase of the number of r
sistive junctions! have been reported in early experimen
studies@8,19#. The left-right symmetry breaking leads to in
teresting features in the breather tails. The no-symm
breather has a two times lower frequency than the volt
drop across the vertical junction. Thus, the breather
quency is inside the upper bandv1(q), and a primary reso-
nance is clearly observed in thePac dependence ong.

In order to test the influence of small fluctuations on t
I -V curves, we repeated the simulations in the presenc
small noise with amplitude'1028. All obtained results are
stableexceptthe switching outcome in Fig. 11. While thi
switching occurs at the same current value, the breather
is changed. In particular, we observed the left-right symm
try breather with three junctions being in the resistive sta

FIG. 11. I -V characteristics and thePac dependence on the d
bias current fora50.1, bL53.0, h50.35.
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Thus, we find extreme sensitiveness of the outcom
breather structure~including its symmetries! to small fluctua-
tions. This implies that the boundaries of the volumes
attraction of different~breather! attractors are entangled in
very peculiar way. We may reliably predict the switchin
position, but not the outcome of the switching.

We also numerically simulated the breather dynamics
the JJL with an extremely large inductance of the cellbL

5500. We did not find any indication of resonances a
instabilities. We argue that the reason for that is the we
dispersion of the linear EW’s for such large values ofbL .
This implies that interactions along the ladder are weak. T
breather is continued to small current values until it switch
to the superconducting state at the dc biasg50.22 for h
50.35. This particular value may be obtained by making u
of the simple dc analysis~17! and the standard theory of th
retrapping current in a single small Josephson junct
@10,16#

g r5~112h!
4a

p
. ~36!

This equation yields a value of 0.22 for the considered ca
in good agreement with the numerical observation. Note t
within this theory, retrapping occurs purely due to ener
considerations, not due to resonances~or instabilities!.

It is very important to notice that for cases with small
intermediate values of inductance of the cell~Figs. 5–11! the
observed currents at which we lose the breather state
switch to the superconducting one exceed the expected
trapping values~36!. We will explain this disagreement in
the next section.

Motivated by the above findings, we investigated the lo
of the HWS upon lowering the current. We recall that in th
state,all vertical junctions are resistive andall horizontal
ones are superconducting. Usually, it is assumed that
HWS loss is again due to a standard retrapping mechan
It is important that any numerical simulation of such a pr
cess is done with the addition of some weak noise, beca
the processor will otherwise perform a perfect simulation
a single junction repeatedN11 times. We chosebL53 and
h50.35. TheI -V characteristic is shown by a thick dashe
line in Fig. 11. The expected retrapping current 4a/p
50.127 is clearly not reached. Instead, we observe the
of the HWS atg50.273. At the same time, it follows from
Eqs. ~8! that the HWS exists as a solution down to the
trapping current of a single junction, i.e., down tog
50.127 So in this case, we conclude that the numeric
observed loss of the HWS atg50.273 isdue to an instabil-
ity. The HWS continues to exist as a solution down to t
standard retrapping current, but it is anunstablestate. This
result is very important, since very often the current value
HWS loss in the absence of a magnetic field is used to e
mate different parameters of the systemassumingthat the
HWS is behaving similar to a single junction. Our resu
show that this is definitelynot the case.
1-9
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VII. EVALUATION OF RESONANCES
AND EWS SPECTROSCOPY

This section is devoted to a quantitative explanation of
observed resonances and switchings.

A. Primary resonances

Primary resonances are characterized bymV5v, where
v is some EE frequency. We detected various primary re
nances withextendedEW’s. The casem51, which corre-
sponds to the breather frequency being located inside
v1(q) band, shows up with resonant steps in theI -V curves
~see, Figs. 8–9!. The finite number of observed resona
steps is due to the discrete spectrum of the excited ca
modes. In addition, we observe strong variations of
breather tail amplitudes.

Higher-order primary resonances (m52,3) are much less
pronounced in theI -V characteristics. They mainly lead to
weaker localization of the breather tail and may be clea
detected in the form of sharp peaks in thePac(g) depen-
dence. Since the breather in our case has left-right symm
the only linear cavity modes that may be exited are symm
ric ~see Sec. II!. These modes are characterized by even v
ues ofk in the expressionqk ~14!. We start our evaluation o
these resonances with the case shown in Fig. 6. We d
mine theg value of each observed peak inPac(g) and thus
obtain the corresponding breather frequencyV(g). We then
compare its multiples with the discrete spectrum of line
mode frequencies of thev1 branch. The numbers are liste
in Table I. We find that all observed resonances are du
symmetric linear modes~evenk52,4,6,8,10) as expected.

The same method of analysis allows us to conclude
the three peaks in Fig. 5~in decreasing order of dc bias! are
due to the following resonances: (m,k)5(2,6);~2,4!;~3,8!.
Similarly, the shoulder and the peak in Fig. 6 are due
resonances with (m,k)5(2,10);~2,8!. Finally, the resonance
in Fig. 8 correspond to the values (m,k)5(2,8);~2,6!;~2,4!.
Note that in all of these cases, the deviations between

TABLE I. Comparison of theoretical predictions of primar
resonances with the numerical results from Fig. 6. First columnk.
Second column: the spectrum of EW’sv1(qk) @cf. ~14!#. Third
column: 2V obtained from the peak positions ofPac(g) in Fig.
6~a!. Fourth column: 3V obtained from the peak positions o
Pac(g) in Fig. 6~b!.

k v1(qk) 2V 3V

1 5.475
2 5.581 5.594 5.590
3 5.745
4 5.949 5.947 5.945
5 6.174
6 6.400 6.387 6.384
7 6.609
8 6.788 6.769 6.772
9 6.923
10 7.008 6.960 6.958
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theoretical and observed numbers are much less than the
quency difference between adjacent cavity modes.

B. Parametric resonances

So far, we did not comment on the nature of the switch
from a breather state to the superconducting state for s
and intermediate values ofbL . The Floquet analysis result
show thatall these switchings are due to aninstability of the
breather. In terms of Floquet multipliers, all of these ins
bilities are due to a collision of twolocalizedFloquet multi-
pliers on the negative real axis. The breather state contin
to exist as a solution to the dynamical equations for low
current values, but it is unstable. Note that the so-called
trapping mechanism instead~as for a single junction! uses
the critical current value as a criterion for retrapping. Thi
argument is based purely on energy considerations and
not take into account any resonance mechanism. This is
surprising, as a single junction has no other degrees of f
dom it may resonate with. Below the retrapping current,
resistive state disappears in this case. So, we may state
the switching from a breather state to the superconduc
one as observed in our simulations is usually driven byreso-
nanceswith localized EE’s~frequency matching! and isnot
due to energy effects~current value matching!.

C. Combination resonances

Let us discuss the nature of the switchings of the brea
for intermediatebL values when the breather frequency
locatedabovethe branchv1(q). These switchings are agai
due to an instability. It is characterized by Floquet multip
ers colliding away from the real axis. As discussed in Sec
this corresponds to a combination resonance. The nume
Floquet analysis shows that one of the two participating m
tipliers is a localizedone @which bifurcates from the lower
branchv2(q)#, while the second one belongs to the deloc
ized spectrum ofv1(q). The Floquet multiplier that finally
leaves the unit circle is alocalizedone. So again the insta
bility of the breather is driven by a localized perturbation

In Fig. 12, the dependence of the arguments and abso
values of all relevant Floquet multipliers is shown for th
breather of Fig. 11. For convenience, we do not plot
complex conjugate multipliers and restrict the arguments
0<arg(m)<p. The narrow bandv2(q) and broad band
v1(q) are nicely observed. The degenerate bandv0 is lo-
cated slightly abovev2(q). This band does not interact wit
other multipliers when crossing them, as expected from
analytical considerations. The two separated arguments
are locatedbelow the v2(q) band havelocalizedeigenvec-
tors @21#.

In the plot of the absolute values, we observe the p
dicted valuesm51 and e2aTb. The multipliers that corre-
spond to lines between these two states generally resid
the circle with radius~31!. Many of them depart from this
circle due to collisions. At current values of 0.55,g,0.7,
we observe parametric resonances 2V5v1(q), which be-
long to the set of weak resonances and do not evolve in
global instability. However, it is possible that a slight vari
tion of control parameters~e.g., decreasing the dampinga)
1-10
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BREATHERS IN JOSEPHSON JUNCTION LADDERS: . . . PHYSICAL REVIEW E 64 066601
might change these resonances into strong ones. Then
would expect sudden instabilities of the breather state
these large current values. In our case, the global instab
is realized when one of the localized multipliers collides w
thev1(q) band aroundg50.48. Subsequent lowering of th
current leads to a fast escape of this multiplier from the u
circle and to the observed switching.

The importance of localized EE’s for the destabilizati
of a breather is simply due to the localized nature of
latter. It is hard~if not impossible! for a breather to generat
a parametric instability through extended EW’s alone,
these excitations are damped out far from the breather ce
In contrast, localized EE’s do not travel away from t
breather center. These modes may be effectively excited
the breather, leading to an instability of the latter.

To understand the nature of the observed instability of
HWS, we show a similar Floquet multiplier plot in Fig. 13

As in the previous plot, we observe weak parametric re
nances of the upper EW band at current valuesg;0.38,
which do not evolve into a global instability. Again, the o
served instability is driven by a combination resonance
g50.175. Since the HWS is an extended state, all Floq
multipliers are also extended. The combination resonanc
due to the collision of two Floquet multipliers belonging
the two EW branchesv6(q) with q5p @we remind the
reader that the EW spectrum of the HWS is different fro
that of the superconducting state and may be obtained
putting g51 in Eq. ~13!#. Note that indeed for the presen
case, the frequency of the HWS at the instability equals 2
while the value of the combinationv2(p)1v1(p)52.69.
For current valuesg;0.18 the HWS is becomingstable
again. However, aroundg50.17, another even stronger in

FIG. 12. Arguments and absolute values of Floquet multipli
versusg for the breather state in Fig. 11.
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stability due to parametric resonance sets in, which bri
the HWS to the next instability well above the expected
trapping current.

VIII. CONCLUSION

We have presented analytical and numerical studies
breather properties in Josephson junction ladders. Our re
confirm and substantially extend early suggestions t
breathers may resonate in different ways with localized a
extended electromagnetic modes. The numerical studies
been done in a parallel manner to the way experiments
conducted. The variation of the control parameterg allows
one to continuously change the breather frequency, whe
the linear mode spectrum is not significantly changed in
domain of interest. We observed primary resonancesmV
5v1(qk) with extended EW’s, parametric resonancesV
52v with localized EE’s, and combination resonanc
mV5v1v1(q1) with a localized EE and a delocalized EW
participating. We also observed a combination resona
that leads to a switching from a small breather~one resistive
vertical junction! to a larger one~three resistive vertical junc
tions! together with a possible symmetry lowering of th
breather.

The primary resonances with extended EW’s lead to s
gularities in the breather tails. This allows one to develo
spectroscopy of EW’s by monitoringPac versusg. Such a
spectroscopy may be experimentally realized, e.g., with
help of a well-known Josephson junction detector techniq
@11,22,23#. It could be important for obtaining a cohere
source of high-frequency radiation, since in such a re
nance, the whole breather tail starts to coherently oscil

s
FIG. 13. Arguments and absolute values of Floquet multipli

versusg for the HWS in Fig. 11.
1-11
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A. E. MIROSHNICHENKOet al. PHYSICAL REVIEW E 64 066601
with large amplitudes. The resistive breather center serve
a region of energy input via a dc bias.

Our studies show that the main control parameter~in ad-
dition to the dc bias! is the self-inductancebL . For smallbL

values the breather frequency is located between the
branches of EW’s,v6(q). One may perform spectroscop
of EW’s of the upper branch, or observe parametric insta
ity of a breather due to localized modes. Moreover, asbL
increases, resonant steps in theI -V characteristics may be
observed. For intermediatebL.1 values, the breather fre
quency is located abovev1(q). In this case, we observ
combination resonances due to localized and delocal
EE’s, which may result in an unusual sensitivity of th
switching outcome on small fluctuations. LargebL values
stabilize the breather states, make resonances impos
and lead to a standard retrapping mechanism for brea
switching to the superconducting ground state. This is lik
the situation for the reported experimental data in Ref.@9#.
However, lowerbL values allow for the appearance of th
above-listed resonances~and perhaps even other still uno
served resonances!. We believe that our findings will help to
make the proper parameter choice when designing other
ders for experiments.

Note that throughout our studies, we alwaysdecreasethe
dc bias g. Let us consider a breather state No. 1, wh
becomes unstable upon lowering the dc bias at a cer
valueg1. Let this be a case where the system will switch
another stable breather state No. 2. This breather state
fact keeping its stability not only upon further lowering
the dc bias, but also upon a reversing~increasing! of the dc
bias. Thus, we find that there exist dc bias windows in wh
both the starting breather state No. 1 and the breather
No. 2 are stable. Even though their dc spatial structures~cf.
Fig. 2! may be identical, the average voltage drops~and fre-
quencies! are in general different. Further increasing of t
dc bias while staying on the breather state No. 2 will lead
an instability and switching atg2.g1. In case the switching
brings the system back to the breather state No. 1, we
faced with the well-known two-state hysteresis phenome
in Josephson junction systems. However, we also obse
cases when the switching due to an instability of breat
state No. 2~upon increasing the dc bias! brings the system to
yet another state, which differs from breather state No.
e.g., simply to the HWS. In such a case, the hysteretic
havior is of a more complex nature. To keep the discuss
of our studies as clear as possible we did not present dat
increasingcurrent.

Another observation is that the expected values of
retrapping current based on a pure dc analysis@10# are too
low to match the observed values at which the breat
switches to the superconducting ground state. Only for v
large bL values do we observe agreement. For all ot
cases, the breather switches to the superconducting stat
an instability driven by parametric resonance with localiz
EE’s. Moreover, the HWS also undergoes an instability t
is due to combination resonances with extended EW’s.

In this paper we always started with a breather configu
tion as in Fig. 2~b!, at large current values. It may be e
pected that the results for other starting configurations
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show up with similar properties, and perhaps with additio
types of resonances as well. This may be due to the fact
the structure of the phase space is very complex, being s
rated in many different regions of attraction of different a
tractors. It is this complexity that makes the understanding
breather properties both a fascinating and complicated un
taking.
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APPENDIX A: POWER OF AC LIBRATIONS
AT THE EDGE OF A JJL

Here we derive the time-average power of ac librations
the edge of a JJL. This characteristic is proportional to
average kinetic energŷḟ2/2&. In order to obtain an expres
sion for the kinetic energy, we have to determine the dyna
ics of the junction at the JJL edge. For this, we write t
system of Eqs.~25! in a matrix form

ÂvW 50. ~A1!

Here,vW is an unknown vector

vW 5S Dv

Dh
D , ~A2!

and Â is a 232 matrix

Â~l!5S a11~l! a12~l!

a21~l! a22~l!
D , ~A3!

where a11(l)5A2(2/bL)coshl, a12(l)52(2/bL)(1
2e2l), a21(l)52(1/bLh)(12el), and a22(l)5B. A
nonzero solution exists if the determinant ofÂ vanishes:
detÂ(l0)50. The parameterl0 was determined in Sec. IV
~28!.

The components of the vectorvW satisfy the condition

Dv52
a22

a21
Dh . ~A4!

To determine the componentsV andH separately, we have to
impose an additional condition at the breather center. T
condition is not known exactly due to the complex dynam
in the resistive breather center. Nevertheless, the ac librat
in the breather tails are weakly depending on it. Here, we
the simplest normalization condition

uDvu21uDhu251. ~A5!
1-12
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Substituting Eq.~A4! into Eq. ~A5!, we obtain

Dh5
ua21u2

Aua21u21ua22u2
,

Dv52
a22ā21

Aua21u41ua22u2ua21u2
. ~A6!

Due to the up-down symmetry in the breather tail, the d
namics of Josephson phases at the edge of the JJL ma
written in the form

wn
v52

Re~a22ā21!e
Re(l0)n cos@ Im~l0!n1Vt#

Aua21u41ua22u2ua21u2

1
Im~a22ā21!e

Re(l0)n sin@ Im~l0!n1Vt#

Aua21u41ua22u2ua21u2
, ~A7!

wn
h5

ua21u2eRe(l0)n cos@ Im~l0!n1Vt#

Aua21u21ua22u2
.

We finally obtain the expression for the average kine
energy~for n,0)

1

2
^ẇn

v2
&5

V2ua22ā21u2eRe(l0)2n

4~ ua21u41ua22u2ua21u2!
. ~A8!

APPENDIX B: LINEAR STABILITY OF THE BREATHER
IN JJL

The stability of periodic motion is analyzed with the he
of the Floquet theory@17,24#. Linearizing the system~8!
around a time-periodic breather solution, we obtain

ën
v1aėn

v1An
v~ t !en

v5
1

bL
~Den

v1¹en21
h 2¹ẽn21

h !,

ën
h1aėn

h1An
h~ t !en

h52
1

hbL
~¹en

v1en
h2 ẽn

h!, ~B1!

ë̃n
h1aė̃n

h1Ãn
h~ t !ẽn

h5
1

hbL
~¹en

v1dn
h2 ẽn

h!,

whereAn(t) are time-periodic coefficients determined by t
given breather state.

The substitution

S en
v

en
h

ẽn
h
D 5e2(1/2)atS kn

v

kn
h

k̃n
h
D ~B2!

allows one to eliminate the dissipation

k̈n
v1Bn

v~ t !kn
v5

1

bL
~Dkn

v1¹kn21
h 2¹k̃n21

h !,
06660
-
be

c

k̈n
h1Bn

h~ t !kn
h52

1

hbL
~¹kn

v1kn
h2k̃n

h!, ~B3!

k̈̃n
h1B̃n

h~ t !k̃n
h5

1

hbL
~¹kn

v1kn
h2k̃n

h!, ~B4!

whereBn(t)52(1/4)a21An(t). Introducing the variables

zn
v5kn

v , zn
h5Ahkn

h , z̃n
h5Ahk̃n

h , ~B5!

we find the system of equations

z̈n
v1Bn

v~ t !zn
v5

1

bL
Dzn

v1
1

bLAh
~¹zn21

h 2¹ z̃n21
h !,

z̈n
h1Bn

h~ t !zn
h52

1

hbL
~zn

h2 z̃n
h!2

1

bLAh
¹zn

v, ~B6!

z̈̃n
h1B̃n

h~ t !z̃n
h5

1

hbL
~zn

h2 z̃n
h!1

1

bLAh
¹zn

v .

These equations describe aHamiltoniansystem, namely,

zẆn5
]H
]pW n

,

pẆ n52
]H
]zWn

, ~B7!

where zWn5(zn
v ,zn

h ,z̃n
h), pW n5(pn

v ,pn
h ,p̃n

h), and the Hamil-

tonianH(zWn ,pW n ,t) is

H5
1

2 (
n

@pn
v2

1pn
h2

1 p̃n
h2

#1
1

2 (
n

@Bn
vzn

v2
1Bn

hzn
h2

1B̃n
hz̃n

h2
#

1
1

2bL
(

n
~zn

v2zn21
v !21

1

2bLh (
n

~zn
h2 z̃n

h!2

1
1

bAh
(

n
zn

v@zn21
h 2 z̃n21

h 2zn
h1 z̃n

h#. ~B8!

Since the particular Hamiltonian may be represented i
general quadratic form, the symplectic product of two diffe
ent trajectories$pW n(t),zWn(t)% and $pW n8(t),zWn8(t)% does not
change in time@17#

I5(
n

@pW n8~ t !zWn~ t !2pW n~ t !zWn8~ t !#. ~B9!

Rewriting our set of equations in the form

dzẆn5
]2H
]pW n

2
dpW n1

]2H
]pW n]zWn

dzWn ,
1-13
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2dpẆ n5
]2H

]zWn]pW n

dpW n1
]2H
]zWn

2
dzWn , ~B10!

and using the notation

J5S 0 E

2E 0 D , ~B11!

whereE is the identity matrix, we obtain

S dpẆ n

dzẆn

D 5J 21¹2HS dpW n

dzWn
D , ~B12!

where¹2H is theHessianof H.
Let us consider the following map by integrating the Eq

~B12! over one periodTb of the initial solution:

S dpW n~Tb!

dzWn~Tb!
D 5U~Tb!S dpW n~0!

dzWn~0!
D . ~B13!

Since the formI is symplectic~B9!, U(Tb) is symplectic
too. As a result, we find that the eigenvalues ofU(Tb) have
to fulfill the condition that ifn is an eigenvalue then 1/n, n* ,
and 1/n* are also eigenvalues. Note that for a margina
stable periodic motion of a Hamiltonian system, the Floq
eigenvaluesn are located on the unit circle. Switching to a
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